B.A/B.Sc $5^{\text {th }}$ Semester (Honours) Examination, 2021 (CBCS)
 Subject: Mathematics
 Course: BMH5CC12
 (Mechanics-I)

Time: 3 Hours
Full Marks: 60

The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any six questions:
(a) (i) For a system of coplanar forces, explain the concept of astatic centre geometrically.
(ii) For a system of coplanar forces acting on a rigid body, find the condition(s) of astatic equilibrium.
(b) A force P acts along the axis of x and another force $n \mathrm{P}$ acts along a generator of the cylinder $x^{2}+y^{2}=a^{2}$, show that the central axis lies on the cylinder

$$
n^{2}(n x-z)^{2}+\left(1+n^{2}\right)^{2} y^{2}=n^{4} a^{2}
$$

(c) A heavy uniform elliptical wire of semi axes a, b is hung over a small rough peg. Show that, if the wire can be in equilibrium with any point in contact with the peg, the coefficient of friction cannot be less than $\frac{a^{2}-b^{2}}{2 a b}$.
(d) Show that the differential equation of the path of a particle in a plane curve under a central attractive force F is $u+\frac{d^{2} u}{d \theta^{2}}=\frac{F}{h^{2} u^{2}}$.
Also prove that $v^{2}=h^{2}\left[u^{2}+\left(\frac{d u}{d \theta}\right)^{2}\right]$.
(e) Discuss the effects of a periodic disturbing force on a harmonic oscillator.
(f) Discuss the motion of a heavy particle on a rough inverted cycloid.
(g) A wire is in the form of a semi-circle of radius a. Show that at an end its diameter, the principal axes in its plane are inclined to the diameter at angles

$$
\frac{1}{2} \tan ^{-1} \frac{4}{\pi} \text { and }\left(\frac{\pi}{2}+\frac{1}{2} \tan ^{-1} \frac{4}{\pi}\right)
$$

(h)

Show that $M K^{2} \frac{d^{2} \theta}{d t^{2}}$ represents the moment about centre of inertia of all external forces acting on the system.

2. Answer any three questions:

(a) (i) A regular hexagon is composed of six equal heavy rods freely jointed together and two opposite angles are connected by a string, which is horizontal, one rod being in contact with a horizontal plane; at the middle point of the opposite rod a weight W_{1} is placed; if W be the weight of each rod, show that the tension of the string is $\frac{3 W+W_{1}}{\sqrt{3}}$.
(ii) $\quad M_{1}, M_{2}, M_{3}$ are the moments of a system of forces acting in the $x y$-plane about three non-collinear points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ respectively. If the resultant of the system is a single force at the origin, show that

$$
M_{1}\left(x_{2} y_{3}-x_{3} y_{2}\right)+M_{2}\left(x_{3} y_{1}-x_{1} y_{3}\right)+M_{3}\left(x_{1} y_{2}-x_{2} y_{1}\right)=0 .
$$

(b) (i) Find the centre of gravity of a plate in the form of a quadrant AOB of an ellipse, the thickness at any point of the plate varying as the product of the distances of the point from OA and OB.
(ii) Define a common catenary. Deduce the cartesian equation of a common catenary.
(c) (i) A particle is projected vertically upwards with a velocity V from the earth's surface. If h and H are the greatest heights attained by the particle moving under uniform and variable acceleration respectively, show that $\frac{1}{h}-\frac{1}{H}=\frac{1}{R}$, where R is the radius of the earth.
(ii) Find the escape velocity of a particle moving under a central force of the velocity; investigate the motion of the particle.
(ii) A particle falls down a cycloid under its own weight starting from the cusp. Show that when it arrives at the vertex the pressure on the curve is twice the weight of the particle.
(e) (i) Deduce the kinetic energy of a rigid body rotating about a fixed point, in terms of its angular velocity and its principal moments of inertia.
(ii) A uniform rod is held at an inclination λ to the horizon with one end in contact with a horizontal table whose coefficient of friction is μ. If it then be released, show that it will commence to slide if

$$
\mu<\frac{3 \sin \lambda \cos \lambda}{1+3 \sin ^{2} \lambda} .
$$

